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Adhesive resistance in the rolling of elastic bodies�
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Abstract

A model of the rolling of a rough cylinder on an elastic half-space when there is adhesive attraction between the surfaces, due to
molecular interaction, is constructed. The contact characteristics and moment of the adhesive resistance to rolling are calculated.
© 2007 Elsevier Ltd. All rights reserved.

It has been established theoretically and experimentally that the main sources of resistance to rolling is the relative
slippage of the surfaces in the contact area, which occurs due to differences in the curvatures and mechanical properties
of the contacting bodies,1,2 the imperfect elasticity of practical materials,3 and forces of molecular adhesion.4

Molecular interaction of the rolling surfaces is a source for the occurrence of the adhesive component of the friction
force. A theoretical-experimental estimate of this component of the rolling friction force was carried out in Ref. 4,
based on the assumption that each approach and separation of the molecules is accompanied by a loss of energy. The
resistance to rolling was also explained in Ref. 5 by the attraction of the separating parts of the surfaces, due to the
occurrence in them of unlike electric charges.

In this paper, an estimate of the adhesive component of the friction force, is based on a mechanism for the dissipation
of energy when irregularities of contacting rough bodies approach and separate when one body rolls over the surface of
the other. When solving the problem, relations obtained earlier in Ref. 6 for the contact characteristics and values of the
energy dissipation in an approach-separation cycle of two axisymmetrical elastic asperities are used. The dependence
of the adhesion attraction of these surfaces, due to molecular interaction, on the distance between them, is described
by a Lennard - Jones potential and is approximated by a step function (the Maugis - Dugdale model). The stress
distributions in the region of the contact interaction, the values of the nominal and actual contact areas, and also the
moment of the resistance to rolling are investigated for different values of the parameters of the surface roughness and
different mechanical and physical characteristics of the interacting bodies.

1. Formulation of the problem

Suppose a rigid cylinder of radius R rolls with an angular velocity � on an elastic half-space. The problem is
considered in a moving system of coordinates, the z axis of which is perpendicular to the cylinder axis and is directed
into the depth of the half-space, while the x axis lies in the undeformed surface of the elastic half-space and is directed
along the motion of the cylinder. The surface of the cylinder is covered with a periodic system of similar asperities,
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Fig. 1.

situated at the nodal points of a square lattice with pitch l. The tips of the asperities have a spherical shape of radius �
where � � R. An external normal force P is applied to the cylinder axis (Fig. 1).

The value of the gap between the surfaces of the rough cylinder and the elastic half-space is given by the expression

where u(x, y) is the elastic displacement of the surface of the half-space in the direction of the z axis, f(x, y) is a function
describing the shape of the surface of the rough cylinder, and c is the maximum depth of penetration of the cylinder
into the elastic half-space.

Contact between the cylinder and the half-space occurs in regions Ai in which the following contact conditions are
satisfied

(1.1)

The friction on the contact surface is assumed to be equal to zero.
The surfaces of the cylinder and the elastic half-space experience adhesive attraction in regions Bi, either doubly

connected and surrounding the regions of contact of the asperities with the half-space Ai, or simply connected for
asperities that are not in direct contact with the half-space. The dependence of the force of adhesive attraction per unit
area on the distance between the surfaces is described by a step function (the Maugis-Dugdale model in Ref. 7), so
that the pressure p(x, y) on the surface of the elastic half-space in the regions Bi is given by the relation

(1.2)

In this case the value of the surface energy, which is equal to the work per unit area, performed when the smooth
surfaces move away from one another to an infinite distance, is given by the expression

(1.3)

2. Method of solution

Reduction to a problem for an individual asperity. In solving the problem it is assumed that the stress-strain state
of the elastic half-space in the neighbourhood of each asperity is unaffected by the other asperities. This assumption
holds if the distance between the asperities is fairly large.8

Consider the position of a rough cylinder for which the lowest asperity is situated symmetrically about the z axis
(Fig. 1). Suppose the depth of penetration of this asperity into the elastic half-space, which coincides with the maximum
depth of penetration of the whole cylinder, is equal to c, while the depth of penetration of a certain i-th asperity is ci

(Fig. 2). From the triangles ABC and AOC (O is the centre of the cylinder, A is the vertex of the i-th asperity and C is
the vertex of the central asperity) we have for the length of the section AC
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Assuming that l � R, we obtain �i = il/R. Then, the penetration of the i-th asperity is given by the relation

(2.1)

where i takes values from 1 to Nr on the right of the central asperity, and from 1 to Nl on the left of it. In all, in the
interaction with the half-space there are Nr + Nl + 1 asperities.

Hence, knowing ci we can consider the interaction of the i-th asperity with the half-space. We will introduce a
local cylindrical system of coordinates (ri, �i, zi) with origin at the centre of the contact area. Since the asperity has a
spherical shape, the distributions of the pressures and elastic displacements in the half-space are symmetrical about the
zi axis in the neighbourhood of an asperity (Fig. 2). Inside the contact area Ai, which is a circle of radius ai, the contact
condition for a displacement u along the zi axis of the boundary of the elastic half-space is satisfied. By relation (1.1)
this condition has the form

(2.2)

It follows from condition (1.2) and the symmetry of the problem that, in the region of adhesive interaction Bi, which
is a ring ai < ri < bi, the pressure p on the boundary of the elastic half-space is determined by the adhesive attraction of
the surfaces; outside the region of interaction the pressure is equal to zero:

(2.3)

The tangential stresses on the boundary of the elastic half-space are equal to zero. The normal pressures p(ri) and
displacements u(ri) are connected by the well-known relation for the axisymmetric contact probem9

(2.4)

where E and � are Young’s modulus and Poisson’s ratio of the elastic half-space and K(x) is the complete elliptic
integral of the first kind.

Eq. (2.4) with boundary conditions (2.2) and (2.3) enables us to determine the normal contact pressures p(xi) and
displacements u(ri) in the region of the contact area of the i-th protuberance with the half-space. To determine the
unknown quantities ai and bi it is necessary to use the condition of continuity of the pressures at the boundary of the
contact area

(2.5)
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and the condition for the surface energy to be constant which, taking relations (1.2) and (1.3) into account, has the
form

(2.6)

where h(bi) is the value of the gap when ri = bi

Relations (2.2)–(2.6) enable us to determine the contact pressures and elastic displacements of the half-space in the
neighbourhood of the i-th asperity, the indentation of which is given by expression (2.1). After this, the normal force
acting from the side of the elastic half-space on each asperity, is determined by the expression

(2.7)

Solution of the problem for an isolated asperity. Using the solution of the problem of the interaction of an axisym-
metric punch with an elastic half-space when there is adhesive attraction, specified in the form of a step function,7

for adhesive contact of the asperity with an elastic half-space we have the following equation relating the radii of the
contact areas and the adhesive interaction ai and bi

(2.8)

and also expressions for the depth of penetration of the asperity and the forces acting on it

(2.9)

Here

Solving Eq. (2.8) for bi and substituting the result into relations (2.9) we obtain the relation between the normal
force qi, acting on the asperity, and the depth of indentation of the asperity ci in the form of a function of the parameter
�i.

Interaction of the asperity with the half-space may also occur when there is no direct contact between the surfaces.
In this case a negative adhesive pressure-p0 acts on the half-space in a circular area of radius bi. When solving this
problem, contact condition (2.2) is not used, and it is assumed that ai = 0 in the remaining conditions. As a result, for
the case when there is no contact, we obtain the relations

(2.10)

The dependence of the normal force qi, acting on the asperity from the side of the elastic half-space, on the depth
of penetration ci has the form shown in Fig. 3. The heavy curve corresponds to contact of the surfaces and relations
(2.8) and (2.9), while the thin curve is for the case when there is no contact and relations (2.10). It can be seen
that the dependence of the force on the depth of penetration is described by a non-unique function. According to
this relation, as the depth of penetration ci increases from -∞ (as the asperity approaches the elastic half-space) the
surfaces intermittently interact when ci = cr; when the depth of penetration increases further the interaction is described
by curve 1. We will denote the dependence of the force on the depth of penetration, corresponding to curve 1, by
qr
i (ci). When the depth of penetration decreases from the maximum value c (when the asperity withdraws from the

surface of the half-space) a sudden interruption of the interaction occurs (the interaction force falls to zero) when ci = cl

(curve 2). We will denote the dependence of the force on the depth of the penetration, corresponding to curve 2, by
ql
i(ci). Hence, the processes in which the asperity approaches the surface of the half-space and moves away from it are

represented by different curves, which corresponds to different values of the force qi, the radius of the contact area
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ai and other characteristics for the same value of the penetration ci. The functions qr
i (ci) and ql

i(ci) are found from
relations (2.8)–(2.10), taking into account the choice of the necessary branch of the non-unique dependence of the load
on the depth of penetration.

The solution for a rough cylinder. We will apply the solution obtained above for the interaction of a single asperity
with an elastic half-space to the problem of the rolling of a rough cylinder. For a specified maximum depth of penetration
of the cylinder into the half-space c, which is identical with the depth of penetration of the central asperity, the depths
of penetration of the remaining asperities ci are given by relation (2.1). The solution obtained above enables us,
from these quantities, to determine the values of the normal forces qi, acting on each asperity from the side of the
elastic half-space (as can be seen from Fig. 3, these forces can be positive or negative depending on the values of
ci) and other characteristics of the contact interaction – the radii of the contact area ai and the regions of adhesive
interaction bi.

The solution for the i-th asperity will depend on the depth of penetration ci and on whether this asperity approaches
the elastic half-space or moves away from it: if it approaches, the force acting on the asperity is determined by the
function qr

i (ci); if it is moving away from it, the force is determined by the function ql
i(ci). In a similar way we can

find the radius of the contact area and other characteristics.
The number of asperities interacting with the half-space on the right of the central asperity (the asperities approaching

the elastic half-space), is determined from a relation similar to (2.1)

whence we have

(2.11)

We can similarly determine the number of asperities which interact with the half-space on the left of the central asperity

(2.12)

In expressions (2.11) and (2.12) [x] denotes the greatest integer not exceeding x. Since cr ≥ cl we have Nr ≤ Nl. In cases
when the depth of penetration of the central asperity is so small that c < cl or c < cr, the number of asperities which
interact with the half-space from the corresponding side of the central asperity, is equal to zero, i.e. Nl = 0 or Nr = 0
respectively.

Hence, for a specified indentation of the central asperity c we can calculate the penetration of all the asperities from
relations (2.1), and then, from Eqs. (2.8) and (2.9), we can determine how the force qi acting on each asperity depends
on the depth of penetration of this asperity ci. From an analysis of this relation we can determine the quantities cr and
cl, and also the functions qr

i (ci) and ql
i(ci). In a similar way we can find how the dimensions of the area of contact of

the asperity with the half-space ar
i and al

i depend on the depth of penetration of the asperity ci. The functions obtained
enable us to calculate the values of the forces acting on each asperity: on the right (qr

i , i = 1..Nr) and on the left
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(ql
i, i = 1..Nl) of the central asperity. We can calculate the force acting on the central asperity from any of the functions

q0 = qr
0(c) = ql

0(c) obtained. The normal force acting on the cylinder is given by the relation

(2.13)

3. Calculation of the contact characteristics

The results of a calculation of the forces acting on a asperities of the cylinder are shown in Fig. 4, where curve 1
represents the distribution of the average dimensionless pressure qi/(lE*) as a function of the dimensionless coordinate
xi/R = li/R. The results were obtained for a dimensionless surface energy �/(p0�) = 0.01, a dimensionless adhesive
pressure p0/E* = 0.1 and a dimensionless normal force acting on the cylinder P/(E*R2) = 1.25 × 10−4. The ratio of the
radii of the asperities and the cylinder �/R = 0.01, and the number of asperities of the cylinder cross section N = 5 × 103.
The calculations showed that in this case the number of asperities, interacting with the half-space on the right, is equal
to Nr = 46, and on the left Nl = 53. It can be seen that the average pressures are positive in the central part of the region
of interaction of the cylinder with the half-space and negative at its edges. Moreover, the pressures are distributed
asymmetrically, which leads to the occurrence of a moment that resists the rolling of the cylinder. For comparison we
show a graph of the distribution of the average contact pressures when there is no adhesion (curve 2); in this case the
pressure is everywhere positive, the distribution is symmetrical and there is no resistance to rolling.

The solution obtained also enables us to calculate the actual contact area Sr (the sum of the areas of all contact
spots) and the nominal contact area Sn (the minimum area of the convex figure containing all the contact spots), per
unit length l of the cylinder

In Fig. 5 we show graphs of the dimensionless nominal contact area Sn/R2 (the dashed curves) and the actual
contact area Sr/R2 (the continuous curves) as a function of the normal force acting on the cylinder P/(E*R2) when
there is adhesion with parameters �/(p0�) = 0.01 and p0/E* = 0.1 (curves 1) and when there is no adhesion (curves 2).
The geometrical characteristics of the cylinder are �/R = 0.01 and N = 104. The results show that taking adhesion into
account leads to a nonunique dependence on the load of both the nominal and the actual contact areas, and also to
the existence of contact in a certain region of negative loads on the cylinder. The solution of the problem when the
adhesive interaction of the surfaces is ignored gives reduced values of both the nominal and actual contact areas.

4. Calculation of the resistance to rolling

As follows from the solution of the problem considered in Section 2 for an individual asperity, the relation between
the force acting on one asperity qi and the depth of penetration of this asperity ci (Fig. 3) is non-unique. It follows from



I.G. Goryacheva, Yu.Yu. Makhovskaya / Journal of Applied Mathematics and Mechanics 71 (2007) 485–493 491

Fig. 5.

this that for a cyclical approach of the asperity to a half-space and its separation from it a loss of energy occurs provided
that the greatest depth of penetration of the asperity per cycle exceeds cr. The value of this energy loss corresponds to
the area shown hatched in Fig. 3 and is given by the expression

(4.1)

The energy loss in a complete rotation of the cylinder is �wN1, where N1 is the number of asperities in a section of
the cylinder, for which the maximum depth of penetration into the half-space after a single rotation of the cylinder
exceeds cr. Assuming that this energy loss is equal to the work of the moment of the resistance to rolling per single
rotation of the cylinder 2	M, we obtain the following expression for the moment of the resistance

(4.2)

In the model of a rough cylinder considered in the previous sections, which has N similar asperities in a section, the
number N1 is given by a step function

(4.3)

We can also consider the case when the asperities have a statistical distribution over the height

(4.4)

where �(t) is the distribution density; for example, for Gauss’ law

Graphs of the dimensionless moment of the resistance to rolling M/(E*R3) as a function of the distance between
the cylinder and the half-space d = −c, obtained from the calculations, are shown in Fig. 6 for a cylinder with the
single-level model of roughness (curve 1) and a Gaussian distribution of the asperities over the height (curve 2). The
results were obtained for
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Fig. 7.

The root mean square deviation in the case of a Gaussian distribution of the heights 
/R = 0.01. The results show that,
when the depth of penetration increases, the resistance to rolling increases in the first case abruptly, while in the second
it occurs smoothly and approaches a constant value, which depends on the geometrical parameters of the cylinder, the
elastic properties of the half-space and the characteristics of the adhesive interaction potential.

The results also show that the moment of the resistance to rolling M/(E*R3) increases as the surface energy of the
interacting bodies � increases. This is illustrated by the curves shown in Fig. 7, which were obtained for p0/E* = 0.1,
N = 104 and various radii of curvature of the asperity: �/R = 0.01 (curve 1) and �/R = 0.012 (curve 2) for the same
roughnesses and depths of penetration over the height, exceeding cr. It can be seen that the moment of the resistance
when the surface energy increases reaches a constant value, which is a consequence of the use of the Maugis-Dugdale
model for adhesive attraction of the surfaces. It also follows from the results that adhesion losses of energy and,
consequently, the resistance to rolling are greater for the case of asperities of large radius �.

5. Conclusions

We have constructed a model of the rolling of a rough cylinder on an elastic half-space when there is adhesive
attraction between the surfaces.

We have calculated the contact characteristics: the distribution of the average pressures on elementary contact spots,
and the nominal and actual contact areas.

We have established that, for asperities which approach the half-space and which separate from it during rolling,
there are different dependences of the force acting on the asperity from the side of the half-space, the size of the contact
area and other contact characteristics on the depth of penetration of the asperity into the half-space. This leads to the
occurrence of a moment of resistance to rolling of the cylinder.

We have proposed a method of determining the moment of adhesive resistance to rolling of the cylinder, based on
a calculation of the energy loss when each asperity approaches the half-space and separates from it during the rolling
of the cylinder.
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We have analysed the moment of the resistance to rolling as a function of the surface energy of the interacting bodies
and the depth of penetration of the cylinder into the elastic half-space, and also for different models of the roughness
of the cylinder: single-level and with a Gaussian distribution of the asperities over the height for different radii of the
asperities.
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